93 research outputs found

    RAPID SPACE TRAJECTORY GENERATION USING A FOURIER SERIES SHAPE-BASED APPROACH

    Get PDF
    With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated

    An experimental and numerical investigation on strengthening the upright component of thin-walled cold-formed steel rack structures

    Get PDF
    Cold-formed steel (CFS) racking systems are widely used for storing products in warehouses. However, as commonly used structures in storage systems, thin-walled open sections are subjected to stability loss because of various buckling modes, including flexural, local, torsional and distortional. This research proposes a novel technique to increase the ultimate capacity of uprights, utilising bolts and spacers, under flexural and compressive loads. The proposed components are attached externally to the sections in certain pitches along the length. In this regard, axial tests were performed on 72 upright frames and nine single uprights with various lengths and thicknesses. Also, the impact of using reinforcing elements was evaluated by investigating the failure modes and ultimate load results. It was concluded that the reinforcement technique is able to restrain upright flanges and therefore improve the upright profiles' strength. For testing the flexural behaviour, 18 samples of three types were made, including non-reinforced sections and two types of sections reinforced along the upright length at different pitches. After that, monotonic loading was applied along both the minor and major axes of the samples. The suggested reinforcing method leads to increasing the flexural capacity of the upright sections about both the major and minor axes. Also, by using reinforcing system, the flexural performance was improved, and buckling and deformation were constrained. In addition, the reinforcement technique was evaluated by Finite Element (FE) method. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms were deployed to predict the normalised ultimate load and deflection of the profiles. Following the empirical tests, the axial and flexural performance of different CFS upright profiles with various lengths, thicknesses and reinforcement spacings were simulated and examined. It was shown that the reinforcing technique improved the capacity of the samples. Consequently, the proposed reinforcements could be considered a highly effective and low-cost technique to strengthen the axial and flexural behaviour of open CFS sections considering a trade-off between performance and cost of utilising the approach

    The effect of Sm2O3 on the sintering and grain growth behaviors of SnO2-based ceramics

    Get PDF
    The effect of samarium oxide was examined on the sintering, microstructure, and grain growth behaviors of (Co, Nb)-doped SnO2-based ceramics prepared by co-precipitation method. The sintered samples were studied through x-ray diffraction (XRD), scanning electron microscopy (SEM), and electron dispersive spectroscopy (EDS) analyses. The microstructure observations revealed that the samples were near fully dense at a sintering temperature of 1200°C for 1h. The samarium doping prevented accelerated grain growth of the SnO2-based ceramic in the final stage of the sintering. The mean grain size of the SnO2-based ceramic without Sm2O3 doping was 2.70μm, which was reduced to 0.887μm for the sample doped with 0.05mol% Sm2O3. The grain size reduction of samples doped with Sm2O3 could be attributed to the segregation of Sm2O3 at the grain boundaries

    Enhanced Smoothing Technique for Indirect Optimization of Minimum-Fuel Low-Thrust Trajectories

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140652/1/1.G000379.pd

    I/O Burst Prediction for HPC Clusters using Darshan Logs

    Full text link
    Understanding cluster-wide I/O patterns of large-scale HPC clusters is essential to minimize the occurrence and impact of I/O interference. Yet, most previous work in this area focused on monitoring and predicting task and node-level I/O burst events. This paper analyzes Darshan reports from three supercomputers to extract system-level read and write I/O rates in five minutes intervals. We observe significant (over 100x) fluctuations in read and write I/O rates in all three clusters. We then train machine learning models to estimate the occurrence of system-level I/O bursts 5 - 120 minutes ahead. Evaluation results show that we can predict I/O bursts with more than 90% accuracy (F-1 score) five minutes ahead and more than 87% accuracy two hours ahead. We also show that the ML models attain more than 70% accuracy when estimating the degree of the I/O burst. We believe that high-accuracy predictions of I/O bursts can be used in multiple ways, such as postponing delay-tolerant I/O operations (e.g., checkpointing), pausing nonessential applications (e.g., file system scrubbers), and devising I/O-aware job scheduling methods. To validate this claim, we simulated a burst-aware job scheduler that can postpone the start time of applications to avoid I/O bursts. We show that the burst-aware job scheduling can lead to an up to 5x decrease in application runtime.Comment: 10 pages, 11 figures, 2 table

    Antioxidant capacities and total phenolic contents enhancement with acute gamma irradiation in Curcuma alismatifolia (Zingiberaceae) leaves

    Get PDF
    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink
    corecore